Molecular Structure of Human TFIIH

نویسندگان

  • Patrick Schultz
  • Sébastien Fribourg
  • Arnaud Poterszman
  • Véronique Mallouh
  • Dino Moras
  • Jean Marc Egly
چکیده

TFIIH is a multiprotein complex required for both transcription and DNA repair. Single particles of human TFIIH were revealed by electron microscopy and image processing at a resolution of 3.8 nm. TFIIH is 16 x 12.5 x 7.5 nm in size and is organized into a ring-like structure from which a large protein domain protrudes out. A subcomplex assembled from five recombinant core subunits also forms a circular architecture that can be superimposed on the ring found in human TFIIH. Immunolabeling experiments localize several subunits: p44, within the ring structure, forms the base of the protruding protein density which includes the cdk7 kinase, cyclin H, and MAT1. Within the ring structure, p44 was flanked on either side by the XPB and XPD helicases. These observations provide us with a quartenary organizational model of TFIIH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.

TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topol...

متن کامل

Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing.

The basal transcription/repair factor II H (TFIIH), found mutated in cancer-prone or premature aging diseases, plays a still unclear role in RNA polymerase I transcription. Furthermore, the impact of this function on TFIIH-related diseases, such as trichothiodystrophy (TTD), remains to be explored. Here, we studied the involvement of TFIIH during the whole process of ribosome biogenesis, from R...

متن کامل

Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome.

In mammalian cells, the core factors involved in the damage recognition and incision steps of DNA nucleotide excision repair are XPA, TFIIH complex, XPC-HR23B, replication protein A (RPA), XPG, and ERCC1-XPF. Many interactions between these components have been detected, using different physical methods, in human cells and for the homologous factors in Saccharomyces cerevisiae. Several human nu...

متن کامل

Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex

Trypanosoma brucei is a member of the early-diverged, protistan family Trypanosomatidae and a lethal parasite causing African Sleeping Sickness in humans. Recent studies revealed that T. brucei harbors extremely divergent orthologues of the general transcription factors TBP, TFIIA, TFIIB and TFIIH and showed that these factors are essential for initiating RNA polymerase II-mediated synthesis of...

متن کامل

XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression.

Mutations in the XPD subunit of the transcription/DNA repair factor (TFIIH) give rise to trichothiodystrophy (TTD), a rare hereditary multisystem disorder with skin abnormalities. Here, we show that TTD primary dermal fibroblasts contain low amounts of collagen type VI alpha1 subunit (COL6A1), a fundamental component of soft connective tissues. We demonstrate that COL6A1 expression is downregul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2000